

Craig Gardner Team Leader - Cementing Energy Technology Company Drilling and Completions Department 3901 Briarpark Houston, TX 77042 Tel 713.954.6154 Fax 713.954.6177 craig.gardner@chevron.com

Sambhav N. "Sam" Sankar Deputy Chief Counsel National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling One Thomas Circle, 4th Floor Washington DC 20005

October 26, 2010

NATIONAL COMMISSION ON THE BP DEEPWATER HORIZON OIL SPILL AND OFFSHORE DRILLING CEMENT TESTING RESULTS

MR. SAMBHAV N. "SAM" SANKAR

This report summarizes the results of the testing conducted in the cementing laboratory at Chevron's Briarpark facility at the request of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.

We conducted these tests using samples of cement and additives supplied by Halliburton and sent to the Chevron laboratory at the request of the Commission. To our knowledge, these materials were supplied by Halliburton as representative of materials used on the Deepwater Horizon but are neither bulk plant samples nor rig samples from the actual job.

The mud sample used in the contamination testing described in this report was supplied by MI Swaco at the Commission's request. It is a sample of drilling fluid from an actual drilling operation (i.e. not laboratory-prepared nor taken from a freshly-built mud in a liquid mud plant). MI Swaco supplied an analysis (mud check) with the sample, and a similar suite of tests were run in the Chevron drilling fluids laboratory to confirm the fluid characteristics. Both the MI Swaco results and the Chevron results compare reasonably well with the field mud check #79 dated April 19, 2010. Copies of the mud reports are contained in the Appendix.

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

The testing was based on the Halliburton laboratory report dated April 12, 2010 and contained in Appendix J of the BP report *Deepwater Horizon Accident Investigation Report, September 8, 2010,* Appendix J. Most of the tests were conducted using multiple protocols. API and ISO cementing standards are, for the most part, technically identical standards which allow latitude in test procedures. The Halliburton report does not contain sufficient information to determine the exact test protocol used in the Halliburton lab in all cases. Halliburton elected not to provide additional information clarifying its testing protocols that was requested through the Commission. Therefore, a range of test procedures was selected to encompass a variety of test conditions.

Many of the test results were in reasonable agreement with those reported by Halliburton. However, we were unable to generate stable foam with any of the tests described in Section 9 of this report.

A Janner

Craig Gardner

Table of Contents

Section 1: Thickening Time	4
Section 2: Mud Balance	4
Section 3: Mixability	4
Section 4: Fluid-Loss and Free-Fluid Testing	5
Section 5: UCA Compressive Strength	5
Section 6: Crush Compressive Strength	7
Section 7: FYSA Viscosity Profile and Gel Strength	7
Section 8: Rheological Profile Measurements	8
Section 9: Foam Mixing and Stability	9
Section 10: Mud Contamination of Unfoamed Slurry Sonic Strength Development	12
Section 11: Stability of Foamed Cement with Mud or Spacer Contamination	13
Section 12: Static Gel Strength Development	13
Appendix	14

Section 1: Thickening Time

Two test schedules were used:

- (1) 135°F reached in 83 minutes with 14,458 psig
- (2) 135°F reached in 230 minutes with 14,458 psig

Schedule (1) is taken from the Halliburton report. In schedule (2), the time-to-temperature is lengthened to correspond to the time-to-bottom from the Opticem simulation dated April 18, 2010.

Table 1: Thickening Time Test Results

Test	Laboratory	Test	30 B _c	40 B _c	50 B _c	70 B _c
Schedule		Identifier	(hh:mm)	(hh:mm)	(hh:mm)	(hh:mm)
1	Halliburton	73909/2	07:25	07:34	07:36	07:37
1	Chevron	100432-6	08:11	08:14	08:16	08:18
2	Chevron	100431-5	08:14	08:17	08:18	08:20

Section 2: Mud Balance

Density of the base slurry was confirmed with a pressurized fluid density balance using the method described in Clause 6 of API RP10B-2/ISO10426-2.

Table 2: Pressurized Mud Balance Results

Laboratory	Test Identifier	Slurry Density (lbm/gallon)		
Halliburton	811529	16.7		
Chevron	100431-5 foamed weigh up sheet	16.7		

Section 3: Mixability

The slurry was prepared according to Clause 5 of API RP10B-2/ISO10426-2.

Halliburton's report rated the slurry mixability as a "4" on a scale of 1 to 5, with zero being assigned to a slurry which is deemed unmixable.

Chevron rated the slurry as mixable using a combination of factors:

The dry powder was incorporated into the mix fluid easily in 12-18 seconds depending on the particular test.

The blender consistently achieved 12,000 rpm and good slurry vortices were observed. However, sedimentation was noted in the blender bowl.

The initial consistency of the slurry was $13 - 18 B_c$ depending on the particular test. For context, Chevron uses an initial consistency value of $35 B_c$ (maximum) as a mixability "flag".

Section 4: Fluid Loss and Free Fluid Testing

Halliburton did not report these tests. They were included in the present testing program because un-foamed cap and shoe track slurries were pumped on the job.

The slurries were conditioned in a high-temperature, high-pressure consistometer according to the same test schedules used for the thickening time testing.

The fluid loss tests were conducted according to API RP10B-2/ISO 10426-2 Clause 10, using a "short cell" fluid loss apparatus.

The free-fluid tests were conducted according to API RP10B-2/ISO 10426-2 Clause 15.5, using the ambient temperature static period. The free-fluid tests were conducted with the 250-mL graduated cylinder inclined at 45 degrees and 90 degrees (vertical). The results are found in Table 3.

Test	Conditioning	Test	Fluid Loss	Free Fluid	Free Fluid
Schedule		Identifier	(mL/30 min)	(90° vertical)	(45° angle)
1	HTHP	100432-6	578	1.6 percent	2 percent
2	HTHP	100431-5	456	zero	Channel present
1	Atmospheric	100432-6	Not Run	Settling ¹	8.8 percent

Table 3: Fluid Loss and Free Water Results

¹Slurry sampled from the top of the graduate weighed 15.96 lbm/gal. Slurry sampled from the bottom of the graduate weighed 17.4 lbm/gal

Section 5: UCA Compressive Strength

The sonic compressive strength of the base slurry was measured according to Clause 8 of API RP10B-2/ISO10426-2, using an ultrasonic cement analyzer. Three testing schedules were used:

1) Heat to 135°F in 83 minutes with 14,458 psig (thickening time schedule), condition for a total elapsed time of 3 hours from initial application of temperature and pressure, remove from the consistometer and place in a pre-heated 135°F UCA and

heat from 135°F to 210°F in 4 hours with a confining pressure of 14,458 psig. Data are presented using both algorithm B and the foamed-cementing algorithm.

- 2) Heat to 135°F in 83 minutes with 14,458 psig (thickening time schedule), condition for a total elapsed time of 3 hours from initial application of temperature and pressure, remove from the consistometer and place in a pre-heated 135°F UCA and heat from 135°F to 180°F in 4 hours with a confining pressure of 14,458 psig (this procedure was intended to allow a comparison with the crushed foamed cube data). Data are presented using both algorithm B and the foamed-cementing algorithm.
- 3) The slurry was conditioned for 3 hours in an atmospheric consistometer at 135°F. Starting with a cold cup, place in the atmospheric consistometer and ramp temperature to 135°F as quickly as possible. Remove from the consistometer and place in a pre-heated 135°F UCA and heat 135°F to 210°F in 4 hours with a confining pressure of 14,458 psig. Data are presented using both algorithm B and the foamed-cementing algorithm.

The results are summarized in the Table 4. Copies of the test charts are found in the Appendix. The effect of drilling fluid contamination on sonic strength development is described in Section 11.

Laboratory	Schedule	Pressure	50 psi (hr:min)	500 psi (hr:min)	12 hour (psi)	24 hour (psi)	48 hour (psi)	Final (psi)
Halliburton	Circulate 3 hours before pouring	14,458	08:12	08:40	2301	2966	3099	
Chevron	Protocol 1 (B algorithm)	14,458	05:57	06:24	2945	3550	3831	3918@108 hrs
Chevron	Protocol 1 (foam algorithm)	14,458	06:01	06:40	1040	1155	1206	1221@108 hrs
Chevron	Protocol 2 (B algorithm)	14,458	09:58	10:47	1302	3001	3541	3760@108 hrs
Chevron	Protocol 2 (foam algorithm)	14,458	10:03	11:25	643	1050	1153	1193 @ 108 hrs
Chevron	Protocol 3 (B algorithm)	14,458	06:31	06:59	3152	3976	4481	4575 @ 73 hrs
Chevron	Protocol 3 (foam algorithm)	14,458	06:35	07:15	1078	1232		1232 @ 24 hrs

 Table 4: UCA Compressive Strength Development

Section 6: Crush Compressive Strength

The plan was to replicate the crushed cube compressive strength values reported in the Halliburton report with the test ID 806069.

A Humboldt Manufacturing Company Model 2820 3-gang, 2-inch brass mold was prepared according to API RP10B-4/ISO 10426-4. The molds were sealed with gasket material to allow curing in an atmospheric pressure water bath at 180°F.

After 48 hours curing, the samples were removed from the molds and were observed to have lost approximately one-half inch of their original two-inch height (photographs in Appendix). Therefore, no further tests were conducted.

Section 7: FYSA Viscosity Profile and Gel Strength

The Fann Yield Stress Adapter is a proprietary Halliburton test device that replaces the bob and sleeve in a Fann 35-type rotational viscometer. The device and test method are described in SPE 133050, *Techniques for the Study of Foamed Cement Rheology*, Olowolagba and Brenneis, 2010.

This test was not performed during the present study because a stable foam could not be obtained as described in the Section 9 on foamed stability testing. Table 5 contains only Halliburton-reported results.

Laboratory	Temperature	600 rpm	300 rpm	200 rpm	100 rpm	60 rpm	30 rpm	6 rpm	3 rpm
Halliburton (Test ID 806074)	80°F	14	7	5	3	1	1	1	1

Table 5: FYSA Viscosity Profile

6D=1, 3D=1

The FYSA viscosity profile is measured using a different instrument and procedure than the rotor-and-bob configuration described in API RP10B-2/ISO 10426-2, Clause 12. The FYSA viscosity profile cannot be compared with the rheological results that follow in Section 8, Table 6 because of the differences in test methodology and instruments.

Section 8: Rheological Profile Measurements

The rheological values reported in Table 6 were measured using a direct-reading rotational viscometer as described in API RP10B-2/ISO 10426-2, Clause 12. A variety of conditioning methods and measurement sequences were used.

Laboratory	Test Conditions	600 rpm	300 rpm	200 rpm	100 rpm	60 rpm	30 rpm	20 rpm	10 rpm	6 rpm	3 rpm
Halliburton (ID 806075)	Note 1	180	84	56	28	26	8	6	4	2	2
Chevron	Note 2	164	78	52	26	16	8	6	4	2	2
Chevron	Note 2 (rerun)	180	80	58	26	16	8	6	4	2	2
Chevron	Note 3	136	69	45	25	16	10	8	6	6	4
Halliburton (ID 806075)	Note 4	130	56	40	20	12	8	6	4	4	2
Chevron	Note 5	124	57	38	23	16	11	9	8	6	4
Chevron	Note 6	176	92	64	36	24	14	12	8	6	4
Chevron	Note 7	120	76	56	32	22	14	12	10	8	6

Table 6:	Rheological	Profile	Measurements
----------	-------------	---------	--------------

¹80°F – Slurry Conditioning Unknown

 2 80°F – Slurry as mixed – no conditioning, measure and record 300 rpm to 3 rpm readings , then measure and record 600 rpm reading

³ 80°F – Slurry as mixed – no conditioning, measure and record 3 rpm to 300 rpm to 3 rpm readings , then measure and record 600 rpm reading. Report the average values for the 3 rpm to 300 rpm readings. (RP10B-2/ISO 10426-2 Clause 12)

⁴135°F – Slurry Conditioning Unknown

⁵135°F Condition for 30 minutes in atmospheric consistometer. Take measurements from 3 rpm to 300 rpm to 3 rpm and average. Take 600 rpm reading last

⁶135°F Condition in an HTHP consistometer for 83-minute heat-up plus 30 minutes additional conditioning. Take measurements from 600 rpm to 3 rpm

⁷135°F Condition in HTHP consistometer for 230-minute heat-up. Take measurements from 600 to 3 rpm

Section 9: Foam Mixing and Stability

A series of nine tests were conducted under varying conditions as described below. Each test consisted of multiple measurements. API RP10B-4 and ISO 10426-4 are silent on the matter of slurry conditioning so several conditioning methods were used. None of the tests produced a stable foam. Foamed stability was assessed using several methods:

- a) Visual inspection of the fluids: base slurry and foamed slurry
- b) Density measurements of slurry sampled from the blender
- c) Density measurement of slurry sampled from graduated cylinder after a 2-hour quiescent period according to API RP10B-4/ISO 10426-4 Clause 9.3.1.
- d) Density measurement by Archimedes' Principle of samples cured in PVC molds at 180°F according to API RP10B-4/ISO 10426-4 Clause 9.3.3.

The tests are described briefly below and the density measurements summarized in Table 7.

Test 1. Target design foamed density: 14.5 lbm/gal. The slurry was foamed immediately after mixing (no conditioning). The slurry was foamed with a multi-blade assembly (API RP10B-4/ISO 10426-4 Clause 5) for 15 seconds @ 12,000 rpm. A density check of a sample of the foamed cement in a plastic cube of known volume showed the density to be below the designed density. Settling was noted in both the base slurry and the foam so the stability tests in the graduated cylinder and the PVC tubes were not performed. Density measurements were recorded from slurry sampled from the top, bottom and middle of the mixing blender. The results are reported in Table 7.

Test 2. Target design foamed density: 14.5 lbm/gal. Because of the instability noted in the base slurry and foamed slurry in Test 1, the test procedure was modified. Slurry quantities were adjusted to allow mixing and foaming in the same blender. This eliminated the need to transfer slurry from the mixing blender to the foaming blender thereby avoiding the effects of sedimentation in the base slurry. The slurry was foamed for 15 seconds @ 12,000 rpm using the single blade assembly (API RP10B-4/ISO 10426-4 Clause 5). A density check of a sample of the foamed cement in a plastic cube of known volume showed the density to be below the designed density. Settling was again noted in both the base slurry and the foam, so the stability tests in the graduated cylinder and the PVC tubes were not performed. Density measurements were recorded from slurry sampled from the top, bottom and middle of the mixing blender. The results are reported in Table 7.

Test 3. This was a repeat of Test 1 except that the graduated-cylinder and PVC-mold stability tests were performed. Target design foamed density: 14.5 lbm/gal. The slurry was foamed with a multi-blade assembly (API RP10B-4/ISO 10426-4 Clause 5) for 15 seconds @ 12,000 rpm. A density check of a sample of the foamed cement in a plastic cube of known volume showed the density to be below the designed density. The stability tests in the graduated cylinder and PVC molds were conducted. The results are shown in Table 7.

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

Test 4. This was the first test to include slurry conditioning. The target design density was 14.5 lbm/gal. The slurry was conditioned on an atmospheric consistometer for 20 minutes at 110° F (one of the schedules reported by Cementing Solution Inc. for their tests – Appendix K of the BP report). The slurry was foamed with a multi-blade assembly for 15 seconds @ 12,000 rpm. The density was found to be low. Settling was observed in the base and foamed slurry. The stability tests in the graduated cylinder and PVC molds were conducted. The results are reported in Table 7.

Because the measured foam density continued to be low, the laboratory calculations and the density of the base slurry were verified. API RP10B-4/ISO 10426-4 Clause 7.2 describes a method for determining an "offset factor" if the foam density is less than the design density. In this case, the offset factor was 0.4 lbm/gal. In an attempt to attain a foam density of 14.5 lbm/gal, the target foam density was 14.9 lbm/gal in subsequent tests.

Test 5. This test was performed using the offset factor calculated during Test 4. In an attempt to attain a foam density of 14.5 lbm/gal, the target foam density was 14.9 lbm/gal. The slurry was foamed immediately after mixing without conditioning. A density check of a sample of the foamed cement in a plastic cube of known volume showed the density to be 14.9 lbm/gal.

The density attained matched the calculated value (14.9 lbm/gal) but failed to exhibit the expected drop from the offset factor (14.5 lbm/gal was expected). API RP10B-4/ISO 10426-4 Clause 7.2 (j) recommends redesigning the base slurry if the offset factor does not give the desired result. It was decided to continue with the 14.9 lbm/gal foam density for future tests as this was the value reported in the Halliburton report (specific gravity = 1.8).

The stability tests in the graduated cylinder and PVC molds were conducted. The results are reported in Table 7.

Test 6. This test began with conditioning the slurry on an atmospheric consistometer for three (3) hours at 135°F. The conditioning period matched the time reported in the Halliburton report. The offset factor density of 14.9 lbm/gal was used. The slurry was foamed with a multi-blade assembly for 15 seconds @ 12,000 rpm. Slight settling of the base slurry was noted. The density check of a sample of the foamed cement in a plastic cube of known volume showed the density to be 14.7 lbm/gal. Stability tests in the graduated cylinder and PVC molds were conducted. The results are reported in Table 7. The density measurements from the graduated-cylinder samples were unusually high so it was decided to re-run Test 6.

Test 7. This was a repeat of Test 6. The test began with conditioning the slurry on an atmospheric consistometer for three (3) hours at 135° F. The conditioning period matched the time reported in the Halliburton report. The offset factor density of 14.9 lbm/gal was used. The slurry was foamed with a multi-blade assembly for 15 seconds @ 12,000 rpm. Slight settling of the base slurry was noted. The density check of a sample of the foamed cement in a plastic cube of known volume again showed the density to be 14.7 lbm/gal. Stability tests in the graduated

cylinder and PVC molds were conducted. The results are reported in Table 7. The results of Test 7 are in reasonable agreement with those of Test 6.

Density measurements from the graduated-cylinder samples were again high but a careful examination of the volume in the graduated cylinder indicated an approximate 10 mL reduction at the end of the 2 hour quiescent period. This reduction alone would account for a density increase from the initial 14.7 lbm/gal to 15.3 lbm/gal.

Test 8. This was a repeat of Test 7 using a mill sample of Lafarge Class H cement obtained from the manufacturer rather than the cement sample from Halliburton. The additives supplied by Halliburton for the Commission testing were used so the only change was the cement sample.

The test began with conditioning the slurry on an atmospheric consistometer for three (3) hours at 135°F. The conditioning period matched the time reported in the Halliburton report. The offset factor density of 14.9 lbm/gal was used. The slurry was foamed with a multi-blade assembly for 15 seconds @ 12,000 rpm. The density check of a sample of the foamed cement in a plastic cube of known volume showed the density to be 14.0 lbm/gal. Stability tests in the graduated cylinder and PVC molds were conducted. The results are reported in Table 7. The performance was not improved by the change in cement sample.

Test 9. Test 9 was a repeat of Test 6 and Test 7 and achieved similar results. The test began with conditioning the slurry on an atmospheric consistometer for three (3) hours at 135°F. The conditioning period matched the time reported in the Halliburton report. The offset factor density of 14.9 lbm/gal was used. The slurry was foamed with a multi-blade assembly for 15 seconds @ 12,000 rpm. Slight settling of the base slurry was noted. The density check of a sample of the foamed cement in a plastic cube of known volume showed the density to be 14.64 lbm/gal. Stability tests in the graduated cylinder and PVC molds were conducted. The results are reported in Table 7. Tests 6, 7, and 9 are in reasonable agreement.

Test Number	Density from Blender lbm/gal				Density from Graduated Cylinder lbm/gal			ed Cylinder		
1 (unit) er	Тор	Middle	Bottom	Тор	Middle	Bottom	Тор	Middle	Bottom	Very Bottom ¹
1	12.77	13.38	14.06	NR	NR	NR	NR	NR	NR	NR
2	13.89	12.95	14.16	NR	NR	NR	NR	NR	NR	NR
3	NR^2	NR	NR	10.23	12.21	13.34	11.7	13.30	14.10	NR
4	13.82	NR	14.13	13.67	14.14	14.41	11.96	11.84	11.80	12.13
5	14.95	NR	NR	13.70	14.22	14.98	13.97	13.82	13.96	14.73
6	14.66	NR	NR	15.85	16.09	16.30	12.80	12.86	13.07	12.51
7	14.71	NR	NR	14.99	16.11	16.43	12.16	13.15	13.79	13.70
8	14.04	NR	NR	9.80	15.84	16.83	14.05	18.27	19.14	19.87
9	14.64	NR	NR	15.75	16.25	16.51	12.91	13.39	14.17	14.63

Table 7: Foamed Cement Stability Testing

¹The notation "very bottom" refers to the portion of cement contained predominately in the end cap of the PVC fixture.

 2 NR = Not Run

Section 10: Effect of Mud Contamination on Un-foamed Slurry Sonic Strength Development

The effect of drilling-fluid contamination on unfoamed slurry sonic strength development was measured according to API RB10B-2/ISO 10426-2 Clause 16.5, using an ultrasonic cement analyzer (UCA) at 210°F and 14,458 psig. Drilling-fluid concentrations of 0%, 5%, 10%, 15%, 20%, 25%, and 30% by volume were used. Note that the dilutions are noted "by volume" but were prepared in the laboratory by mass for greater accuracy (rather than mixing by volume using beakers or similar containers). The final sonic strength decreased as drilling fluid contamination increased, but the time required to achieve 100 psig sonic strength was not greatly affected.

Contamination	50 psi	100 psi	500 psi	12 hour	24 hour	48 hour	Final
%	(hr:min)	(hr:min)	(hr:min)	(psi)	(psi)	(psi)	(psi)
0	2:49	8:43	9:21	2584	3718	4414	4210
5	4:02	7:28	8:04	2170	2792	3090	3160
10	5:07	7:42	8:24	2089	2612	2763	2763
15	8:36	8:45	9:26	1203	1541	1649	1717
20	8:09	8:16	9:12	890	1071	1126	1117
25	8:04	8:12		271	322	343	345
30 ¹	3:55	7:25	8:37	717	814	837	828

 Table 8: Drilling Fluid Contamination of Base Slurry

¹The 30 percent contamination test was repeated 3 times because it was difficult to maintain a homogenous mixture of drilling fluid and cement slurry at this contamination level. The strength results did not follow the final strength trend.

²500 psi sonic strength was not obtained at this contamination level.

Section 11: Stability of Foamed Cement with Mud or Spacer Contamination

The original plan included evaluating the effect of drilling fluid or spacer contamination on foamed cement stability by two methods:

1) Stirring 5, 10, and 15 percent volume of drilling fluid or spacer into the foamed cement slurry in a manner similar to the CSI testing contained in the BP report.

2) Coating the interior of the 250-mL graduated cylinder used for the foam stability test with mud or spacer, then adding the foamed cement and evaluating the effect.

Neither test series was conducted due to the inability to generate stable foams.

Section 12: Static Gel Strength Development

The static gel strength of the base slurry was tested using two methods:

Static Gel Strength Analyzer (ultrasonic method). The slurry was conditioned in an HTHP consistometer. The slurry was heated to 135°F in 83 minutes with 14,458 psig as described in ISO 10426-6. Test conditions were maintained at 135°F and 14,458 psig for 162 minutes, for a total of 245 minutes (Job Placement Time). The slurry was then removed and placed in a 135°F pre-heated SGSA with 14,458 psig.

Multiple Analysis Cement Slurry (MACS II). The slurry was conditioned in the MACS II. The slurry was heated to 135°F in 83 minutes with 14,458 psig as described in API RP10B-6/ISO 10426-6. Test conditions were maintained at 135°F and 14,458 psig for 162 minutes, for a total of 245 minutes (Job Placement Time) before beginning the static gel strength development period.

Table 9:	Static	Gel Strength	Development
----------	--------	--------------	-------------

Instrument	nstrument Time to 100 lbf/100 ft ² gel strength		Transition Time
SGSA	2:17:30	3:44:00	1:26
MACS ¹	4:04:00	4:41:00	0:37

¹The MACS data may not be correct due to the sedimentation exhibited by the base slurry.

Appendix

Drilling Fluid Analyses	Figures 1 - 3
Thickening Time Charts	Figures 4 - 5
Free Fluid Photographs	Figures 6 - 11
UCA Compressive Strength Charts	Figures 12 - 17
Cube Compressive Strength Photos	Figures 18 - 19
Drilling Fluid – Cement Contamination UCA Charts	Figures 20 - 26

	BP Exploration B.Kalhuza/D.Vi		Field/Area : Description :	MC 252 #1 OCS-G 3230	6	Dep	th/TVD : Date :	18360 ft / 4/19	18349 ft 2010
Well Name : Contractor:	MACONDO Transocean		Water Depth :	MC 252 #1 4992 ft		Mu	d Date : d Type :		llant
Report For :			Rig Name :	Horizon		A	ctivity :		Cement
	ASSEMBLY .625-In DP	CASING 22in @8001	(*TVD)	Hole	UME (bbl)	Du	mp Make	EMIRCO 2200	EMBCD 3200
	-in	18in L @8969		2538	1859		iner x Stk	6x15 in	6x15 in
	-in	16in @11585 f	t (11585 TVD)		lating Volume	Pump Capac		5.342	5.342
π,	-in	13.625-In L @1314	5 ft (13134 TVD)	3	647		p stk/min	0(097%	0/297%
	-in	11.875-in L @1511	3 ft (15103 TVD)	Depth Drill	ed Last 24hr		low Rate		gal/min
	-in 14v4 1/32*	9.875-in L @1717.		Mahara Da	ft filed Last 24hr		Pressure		psi
	ths HC408XC	7in L @183121	t (18301 IVD)	volume Dr	bbi	Total C	itoms Up inculation		
		MUD PROPE						USED Last 24	hr
Sample From		Active 21:00	Active 8:00	0:00	0:00	Products		Size	Amount
FlowLine Temp		NA 18360/18349	NA 18360/18349			ENGINEERING 8 NAFROC COMPL		1. EA	
Depth/TVD Mud Weight	n Ib/gai	18360/18349 14.0(280	18360/18349 14.0@78	.00	.00	SYNTHETIC B 2	SHOLE EN	I. GA	67
Funnel Viscosity	s/q	94	93					n sen	
Rheology Temp	*F	150	150	2					
R600/R300		71/43	70/42	1	1				
R200/R100 R5/R3		32/20	32/21	1			-		
PV	cP	28	28						
YP	Ib/1001	15	14						
10s/10m/30m Gel	Ib/100#3	14/23/29	15/24/29	11	11				
API Fluid Loss	cc/30min	-	2.4@250						
HTHP Fluid Loss Cake APT/HT	cc/30min 1/32*	2.4@250	2.402250	.00	.00	l		-	
Unc Ret Solids	%Vo	27	27						Service and the
Correct Solids	%Vo	26.15	26.06				ONTROL	EQUIPMENT I	
Bynthetic	%Vo	52.5	52.5			Туре		Model/Size	Hrs Used
Uncorr Water Synthetic/Water R	%Vo	20.5	20.5	1	1	Brandt Shale Si Brandt Shale Si		40/165/165	
Alkal Mud (Psm)	200	0.9	0.8	,	,	Brandt Shale St	haker	40/165/165	
CI- Whole Mud	mg/L	27000	26000			Brandt Shale Si		40/165/165	
Saft	%W	17.09	16.56			Brandt Shale St		40/165/165	
Lime Emul Stability	lb/bb	1.17	1.04	-		Brandt Shale Si Brandt Shale Si		40/165/165 40/165/165	
Current Angle	dearees	248	205			Mud Cleaner	naker	40/165/165	
MWD Tool Temp	deg F	-				5500 Centrifuge			
PWD ECD	PP2	-				Verti g Dryer		24	
Riser Boost	gpm	-				75 HP Vacuum			
LCSB/Lepto	Y/N	No/No					OPERTY		Actual
Callb Scales	Y/N	Yes	Yes			Weight	-	14	14.0
BBT PPT	spurtimi	21	21			Viscosity Filtrate		<0-110	94
Reserve Volume	sporem	2011	.0/3.4		-	Fileate	l –	1	2.9
ACOUNT A DIVINE		RKS AND TREATME	NT			R	EMARKS		
MISwaco Man Hor		Man Hours: 4600 Sta		ative Start	Run casing with	no losses and g		ling string. Ril-	RIH to
Cards: 99 Max bbi	s discharged per hi	our: O bbis No losse	es while running ca	sing. No losses	18312' with no	iosses. Problem			
	10. No losses while 1033 bbis left beh	circulating. No losses	while cementing.	No losses while		onvert floats. Circ nd perform ceme			
aisplacing cement	. 1033 DDIS IER DEN	na pipe.			with SBM with		nt job with	no losses. Dis	place cemer
						io iosoca.			
	TION Last 24 hrs	MUD VOL AC	CTG (bbl)		OLIDS ANALY	18	RHE	OLOGY & HY	RAULICS
TIME DISTRIBU		Synthetic Added		Salt Wt%		17.09	no/na		0.723/0.228
Ria Up/Service		Water Added Mud Received	150	Salt Conc Adjusted Solid:	-	14.8	Ko/Ka	sure Loss/%	0.504/6.623
Ria Up/Service Drilling			4260	Synthetic/Wate	er Ratio	72/28	BIC PIESS	HSI	/1.
Ria Up/Service Drilling Tripping	7	Mud Returned		Average SG Sr		3.9	Jet Velo		
Rio Up/Service Oriling Pripping Non-Productive Ti Running Casing	14	Mud Returned Shakers				4.6	Va Pipe		
Rio Uo/Service Oriling Integing Non-Productive Ti Running Casing Condition Hole	14	Mud Returned Shakera Centrifuge		Low Gravity %		43.00	14- 0-1-	-	
Rio Uo/Service Oriling Integing Non-Productive Ti Running Casing Condition Hole		Mud Returned Shakers		Low Gravity % Low Gravity Wit		42.09	Va Colla		727
Rio Uo/Service Oriling Integing Non-Productive Ti Running Casing Condition Hole	14	Mud Returned Shakers Centrifuge Formation Left in Hole Adjustment		Low Gravity %	<u> </u>	42.09 21.4 314.3	Va Colla Cva Pipe Cva Coll		232 295
Rio Uo/Service Oriling Integing Non-Productive Ti Running Casing Condition Hole	14	Mud Returned Shakers Certriflage Formation Left in Hote Adjustment Cuttings Retention		Low Gravity % Low Gravity W High Gravity %	<u> </u>	21.4	Va Colla Cva Pipe Cva Coll ECD at 3	ars Shoe	296
Rio Uo/Service Oriling Integing Non-Productive Ti Running Casing Condition Hole	14	Mud Returned Shekers Centrifuge Formation Left in Hole Adjustment Cuttings Retention Displacement		Low Gravity % Low Gravity W High Gravity %	<u> </u>	21.4	Va Colla Cva Pipe Cva Coll	ars Shoe	
Ria Up/Service	14	Nud Returned Shakers Centrituge Formation Left in Hole Adjustment Cuttings Retention Displacement Running Casing		Low Gravity % Low Gravity W High Gravity %	<u> </u>	21.4	Va Colla Cva Pipe Cva Coll ECD at 3	ars Shoe	295
Rio Uo/Service Oriling Integing Non-Productive Ti Running Casing Condition Hole	14	Mud Returned Shekers Centrifuge Formation Left in Hole Adjustment Cuttings Retention Displacement	1033	Low Gravity % Low Gravity W High Gravity %	<u> </u>	21.4	Va Colla Cva Pipe Cva Coll ECD at 3	ars Shoe	295
Rio Uo/Service Oriling Integing Non-Productive Ti Running Casing Condition Hole	14	Nud Returned Shakers Centritige Formation Formation Left in Hole Adjustment Cuttings Retention Displacement Running Casing Cementing Left Behind Pipe Tripping		Low Gravity % Low Gravity W High Gravity %	<u> </u>	21.4	Va Colla Cva Pipe Cva Coll ECD at 3	ars Shoe	295
Rio Uo/Service 2rilino Inteping Non-Productive Ti Runnino Casing Condition Hole	14	Nud Returned Shakers Scholers Formation Left In Hole Adjustment Cuttings Retention Displacement Running Cesing Cernenting Left Behind Pipe	1033 52	Low Gravity % Low Gravity W High Gravity %	<u> </u>	21.4	Va Colla Cva Pipe Cva Coll ECD at 3	ars Shoe	295
Rio Uo/Service 2rilino Inteping Non-Productive Ti Runnino Casing Condition Hole	14 3 7	Mus Returned Shakars Centrifiage Formation Left In Hole Left In Hole Catings Reterition Displacement Punning Casing Cenerating Left Bahind Pipe Hilpping Boat Tark Bottoms	52	Low Gravity % Low Gravity W High Gravity % High Gravity W	<u> </u>	21.4 314.3	Va Colla Cva Pipe Cva Coll ECD at 3 ECD at 1	ars Shoe TD	295 14
No. Mol@crice Triping Triping Jonn-Froductive Ti Jumning Casing Jondition Hole Jementing M-1 ENOF	14 3 7	Nud Returned Shakers Centritige Formation Formation Left in Hole Adjustment Cuttings Retention Displacement Running Casing Cementing Left Behind Pipe Tripping	52	Low Gravity % Low Gravity W High Gravity % High Gravity W	R	21.4	Va Colla Cva Pipe Cva Coll ECD at 3 ECD at 1	ars Shoe TD	296

Figure 1: Rig Drilling Fluid Report

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

A Schlumberger Comperty	20		ase Mud Report 101011F.0	006
Operator: M-I SWA Well Name: N/A Location: Pelican			Report Date: Depth: Mud Type:	October 11, 2010 N/A RHELIANT
Mud Properties	Initial			
Mud Weight, ppg Rheo Temp, °F	14.19 40	100	150	
600 rpm 300 rpm 200 rpm 100 rpm	228 122 85 47	96 56 42 26	74 46 35 24	
6 rpm 3 rpm	10 8	8 7	10 9	
PV, cps YP, lbs/100 ft ² 10 Second Gel 10 Minute Gel	116 16 12 25	40 16 13 28	28 18 15 25	
HTHP @ 250°F, ml E.S., Vts @ 120°F Excess Lime, ppb	2.4 88 2.98			
Solids, % by Vol Oil, % by Vol Water, % by Vol Syn/Water Ratio	28.5 50.5 21.0 70.6/29.4			
Corrected Solids, % LGS, % LGS, ppb HGS, % HGS, ppb	27.6 6.21 56.47 21.4 314.52			
SG Wt Material CaCl ₂ , % by wt NaCl, % by wt Cr, Whole Mud	4.2 10.0 6.0 25000			
Reviewed by: Ran	ert Christian dy Ray			
Copies to: Dan	/I Cullum, Ole Iac	oc Prebensen.	wike Freeman	

Figure 2: Drilling Fluid Report Supplied by MI Swaco with Commission Mud Sample

Project #: Rig: Prospect: Well: Lease:	S10140 Pelican Island Plan Tank#7	t Sample		Date: Rec'd Date Sample date: Depth: NAF g/ml =	10/13/2010 10/13/2010 10/11/2010 0.790		
Properties			80°F	120°F	150°F		
Density, c/ml			1,696				
Density, Ib/ga			14.15				
Fann dial read	dings:						
	500 RPM		123	102	75		
	300 RPM		70	60	46		
	200 RPM		51 30	28	35		
	100 RPM		8	- 20	9		
	6 RPM 3 RPM		7				
	3 KEW	-					
Plastic viscos	ity, cps		53	42	29		
Yield point, lb	100 ft ²		17	18	17		
Gel strengths							
	10 second		14 31	<u>16</u> 31	<u>16</u> 27		
	10 minute : 500 psig. cm³/30 mi		4.0	@ 250°F			
Water, cm ⁸ (F			0.00	2001			
	ake thickness, 32nd Ir	1	3				
Retort analy				Electr	rical stability (VB)	@ 150°F	85
Sol ds, vol%			31	-	12. CV		
NAF, vol%			49			Plugging Test	
Water, vol%			20	Disk Grade, n		35	-
NA=/water ra			2.49	Test Temp, d Diff. Pressure	-	250°F 2,500	-
	alinity, (POM) chlorides, mg/	5.	23,450	Spurt Volume		0.40	-
	alcium, mg/l (Filtered	D	11,080	PPT Value, m		4.40	-
	bility (VB) @ 120°F		89	PPT Cake, 32		3	-
Lime cortent			3.2				-
Sand Conter	nt %						
		So	lids Analy	sis	Diameter	Cumulative	
Retort QA (1	100 +/- 3 %)	99.24%	lb/bbl	Volume %	microns	less %	
Corrected so				29.54	6	23.04	
	cific gravity of solids	,	3.62		44	86.05	
Low gravity s			98.0	10.77	74	95.39	
High gravity			275.8	18.76			
	ntent, Ib/bbl		10.78		Calide	Analysis Consta	nte ist
Calcium ch Total sodiu			2.22	•	barite g/ml	analysis consta	4.20
	dium chloride	,	2.22	-	low grav g/ml		2.60
Soluble soc			156,636	-	NAF g/ml		0.790
Soluble soc Water phase	salinity, ppm						

Figure 3: Chevron Analysis of MI Swaco Commission Sample

October 26, 2010 Page 19

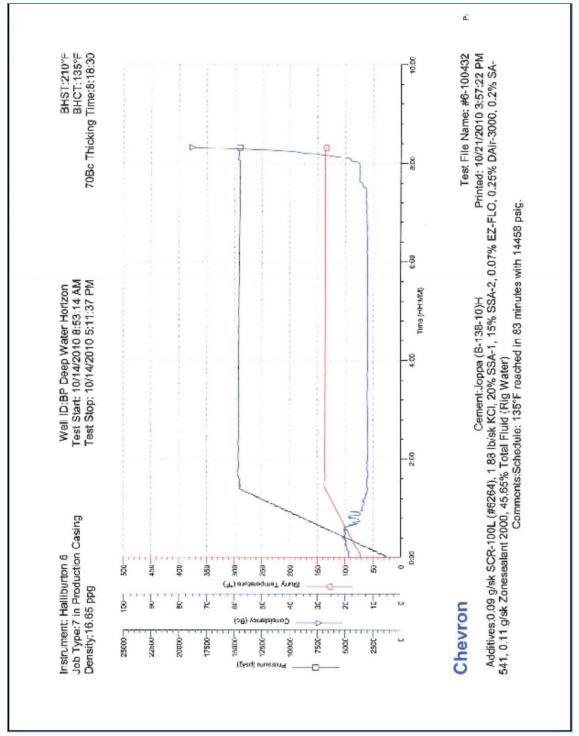


Figure 4: Thickening Time 100432-6 (82 minute heat-up)

October 26, 2010 Page 20

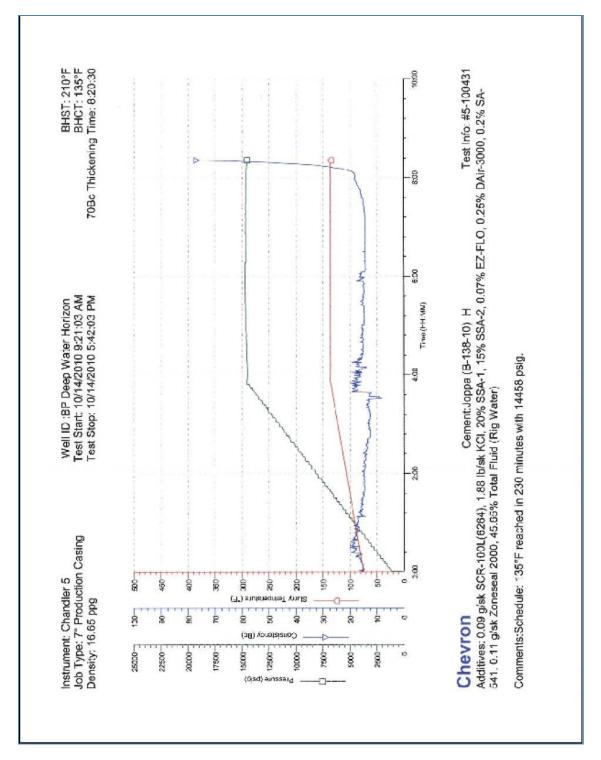


Figure 5: Thickening Time (230 minute heat-up)

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.



Figure 6: Free Fluid - Protocol 1 HTHP - 90 degree

Figure 7: Free Fluid - Protocol 1 HTHP - 45 degree

Figure 8: Free Fluid - Protocol 2 HTHP - 90 degree

Figure 9: Free Fluid - Protocol 2 HTHP - 45 degree

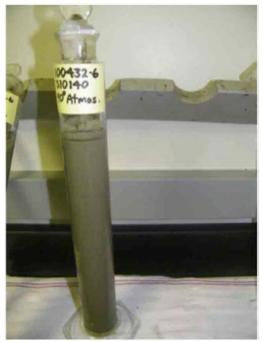


Figure 10: Free Fluid - Protocol 1 Atmospheric - 90 degree

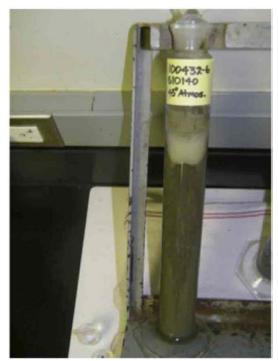


Figure 11: Free Fluid - Protocol 1 Atmospheric - 45 degree

October 26, 2010 Page 24

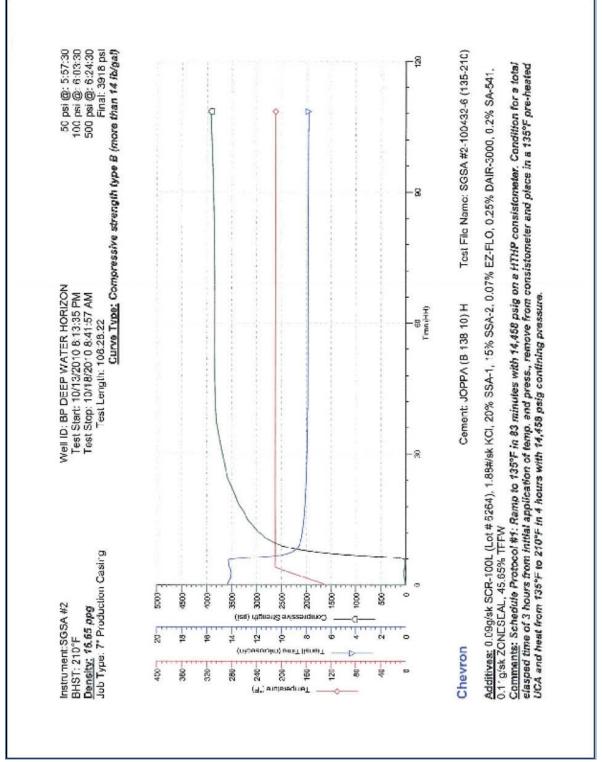


Figure 12: UCA Testing - Protocol 1 - Algorithm B (un-foamed)

October 26, 2010 Page 25

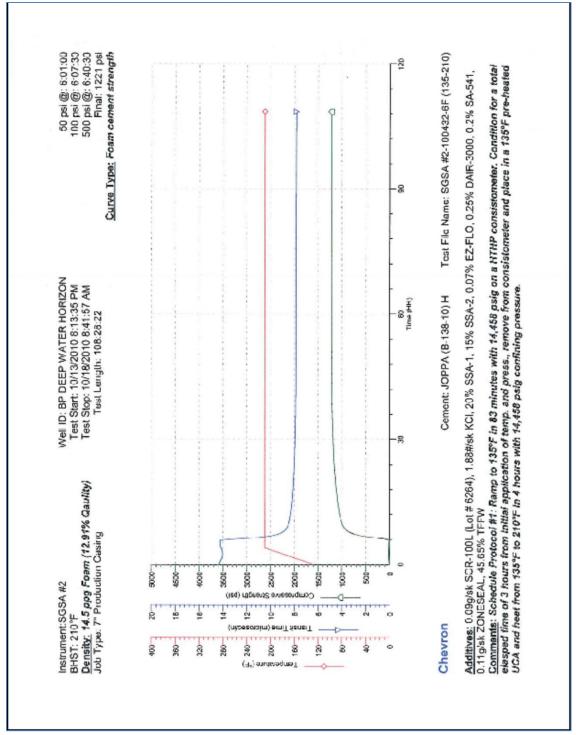


Figure 13: UCA Testing - Protocol 1 - Foamed Cement Algorithm

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

October 26, 2010 Page 26

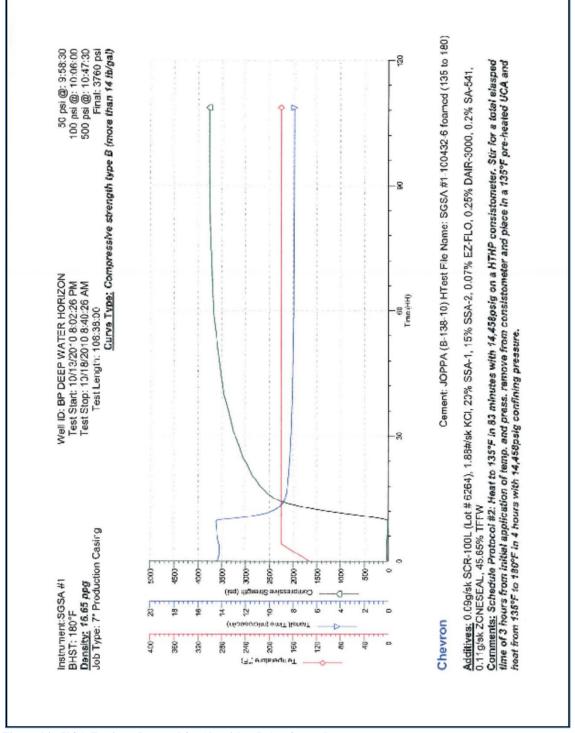


Figure 14: UCA Testing - Protocol 2 - Algorithm B (un-foamed)

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

October 26, 2010 Page 27

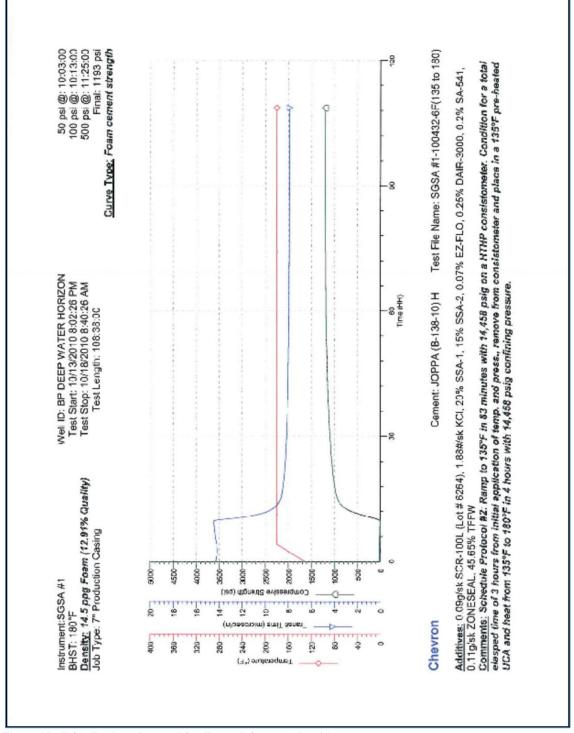


Figure 15: UCA Testing - Protocol 2 - Foamed Cement Algorithm

October 26, 2010 Page 28

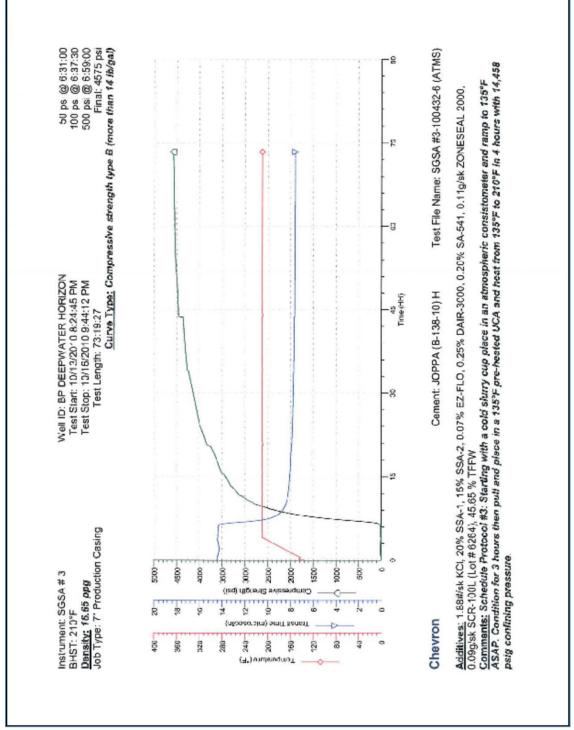


Figure 16: UCA Testing - Protocol 3 - Algorithm B (un-foamed)

October 26, 2010 Page 29

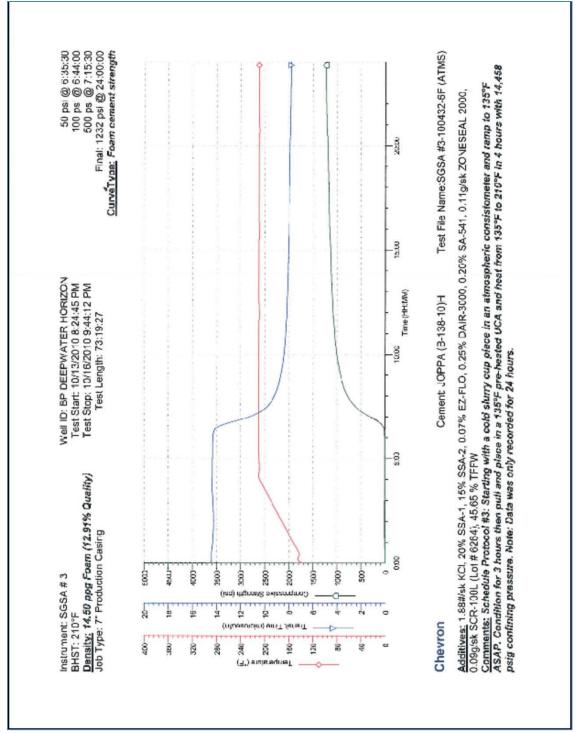


Figure 17: UCA Testing - Protocol 3 - Foamed Cement Algorithm

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

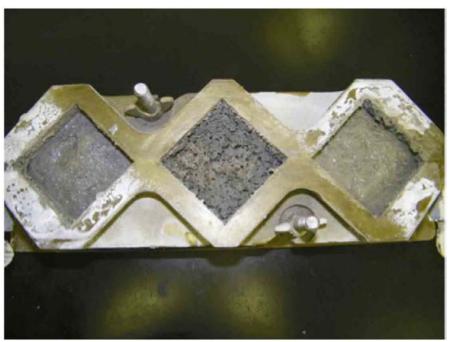
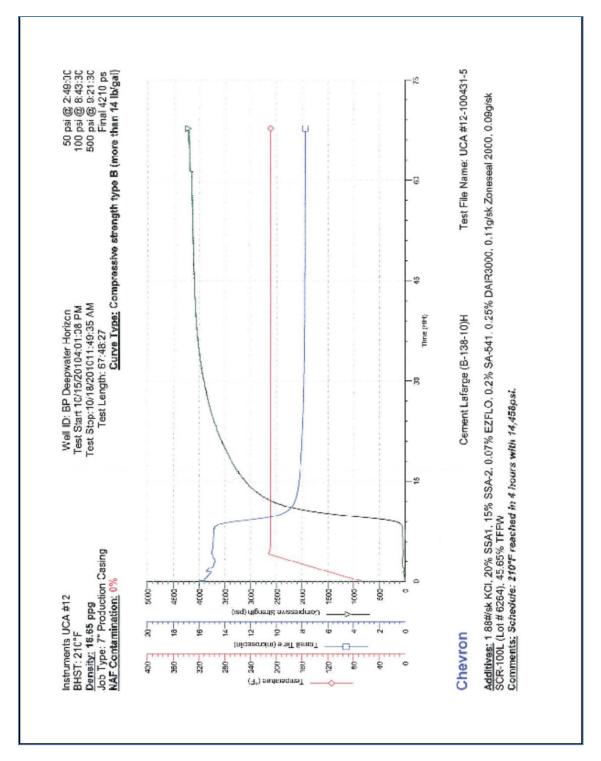



Figure 18: 48 hour Cubes in Mold

Figure 19: 48 hour Cubes Removed from Mold

October 26, 2010 Page 31

Figure 20: Zero Percent NAF Contamination

October 26, 2010 Page 32

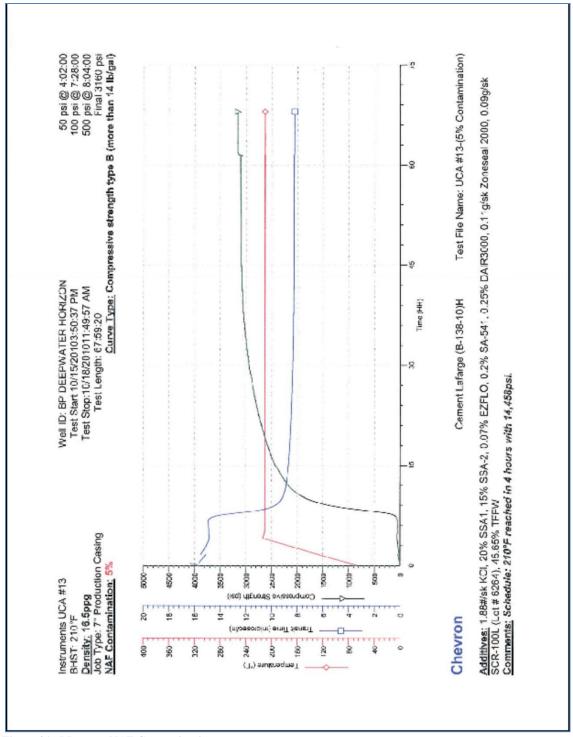


Figure 21: 5 Percent NAF Contamination

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

October 26, 2010 Page 33

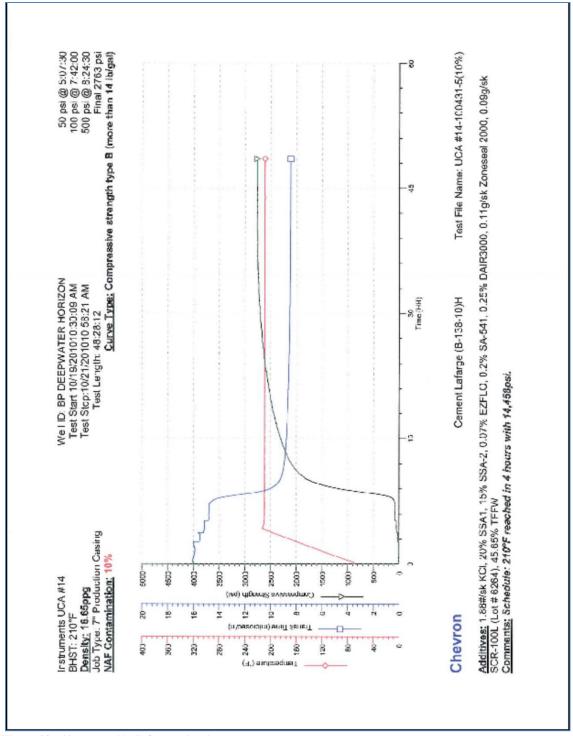


Figure 22: 10 percent NAF Contamination

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

October 26, 2010 Page 34

Figure 23: 15 Percent NAF Contamination

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

October 26, 2010 Page 35

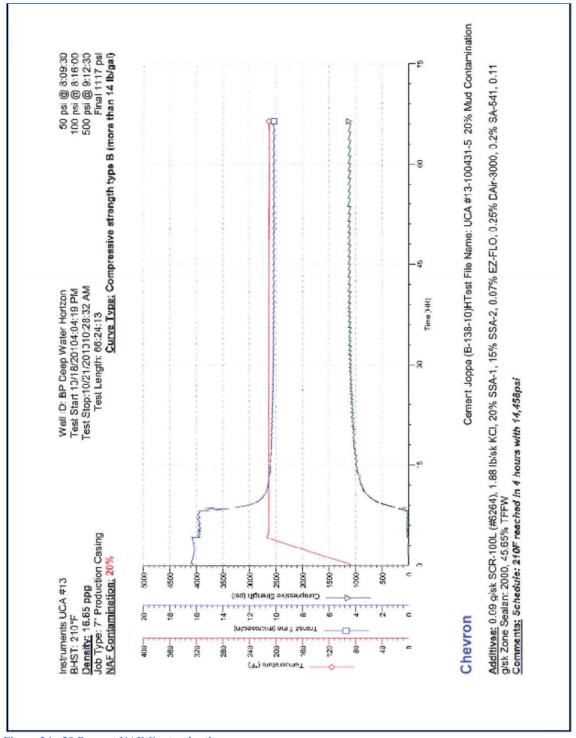


Figure 24: 20 Percent NAF Contamination

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

October 26, 2010 Page 36

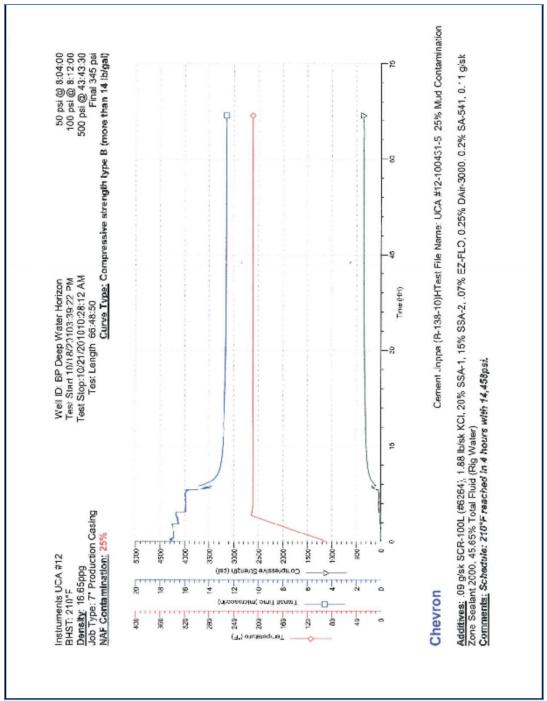


Figure 25: 25 percent NAF Contamination

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.

October 26, 2010 Page 37

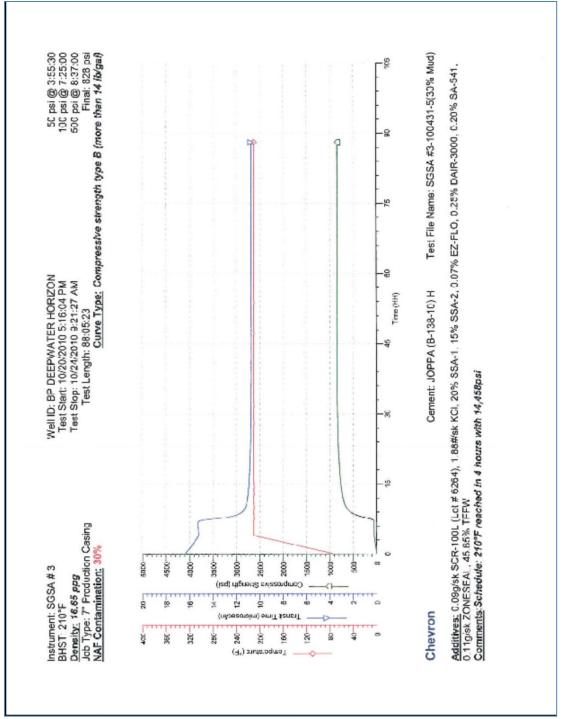


Figure 26: 30 Percent NAF Contamination

This document may contain confidential information and is intended only for the use of the parties to whom it is addressed. If you are not an intended recipient, you are hereby notified that any disclosure, copying, distribution or use of any information in this document is strictly prohibited. If you have received this document in error, please notify the sender immediately at the telephone number indicated above.